第143章 拉格朗日中值定理!
书迷正在阅读:降临漫威的火影忍者、从莽荒开始悟道诸天!、斗罗:我引领了这个时代、建成大唐、我在火影开发恶魔果实咒印、斗罗:武魂谱尼,世间无敌、人在木叶,这个鸣人躺平了、我的万花筒瞳术是深蓝加点、网王:这个球员背靠正义、武动:重生墓府之主,多子多福!
了,接下来请再接再厉,组织需要你们。”教授听闻关於红密破译资料的信息核实报告,深呼吸一口气,强压下心中的激动,夸赞道。 ??“保证完成任务。”青年男人放下手中文件,挺直身体,敬了一个军礼,转身离去。 ??“难以想象,真的是难以想象,尽管张三先生已在信中描述过这个情况,但我现在仍旧感觉到震撼,我从未想过,有朝一日会完全掌握日军部队的动向,知道他们什麽时候外出训练和目的地等等。”待青年工作人员离去後,教授向着其余两名中年男人说道。 ????言语之中,满是感慨与震撼。 ??“是啊,教授同志,我认为时机成熟,该向中央报告红密破译资料的情况了。”戴着眼镜的中年男人点头说道。 ??教授认真点头:“是的,我立刻去办。” ??…… ??翌日。 ??清晨时分,骄阳初升。 ??“微分中值定理是一系列中值定理的总称,主要分为五大类,泰勒公式、拉格朗日中值定理、洛必达法则、柯西中值定理和罗尔定理,拉格朗日中值定理和洛必达法则我先前已经讲过,不过,那是从高数角度讲,我们今天从数分角度讲拉格朗日中值定理。” ??“中值定理由众多定理共同构建,拉格朗日中值定理是核心,罗尔定理为其特殊情况,柯西定理是推广。” ??“如果函数满足在闭区间[a,b]上连续;在开区间(a,b)内可导,那麽在(a,b)内至少有一点ξ(a